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The classical (i.e., non-quantum) equilibrium statistical mechanics of a Coulomb
fluid living on a pseudosphere (an infinite surface of constant negative curva-
ture) is considered. The Coulomb fluid occupies a large disk communicating
with a reservoir (grand-canonical ensemble). The total charge Q on the disk
fluctuates. In a macroscopic description, the charge correlations near the
boundary circle can be described as correlations of a surface charge density s. In
a macroscopic approach, the variance of Q and the correlation function of s are
computed; they are universal. These macroscopic results are shown to be valid
for two solvable microscopic models, in the limit when the microscopic
thickness of the surface charge density goes to zero.
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1. INTRODUCTION

This paper is dedicated to Elliott Lieb on the occasion of his 70th birthday.
It is a variation on a theme to which Elliott has brought major contribu-
tions. (1, 2)

How statistical mechanics is affected by the curvature of space might
be of some interest in general relativity, and also is an amusing problem
per se. A simple case is a two-dimensional system living on a pseudosphere,



i.e., a surface of constant negative curvature. Unlike the sphere, the pseudo-
sphere has an infinite area, and therefore, on a pseudosphere, one can con-
sider the thermodynamic limit of some system while keeping a given
curvature. A special feature is that, for a large domain, the neighborhood
of the boundary has an area of the same order of magnitude as the whole
area of this domain; this feature makes the approach to the thermodynamic
limit rather different to what happens in a flat space.

More specifically, the present paper deals with a two-dimensional
classical (i.e., non-quantum) Coulomb fluid living on a pseudosphere. This
is a system of charged particles interacting by Coulomb’s law, with this law
defined on the pseudosphere, i.e., as the solution of the Poisson equation
written with the pseudosphere metric. The Coulomb fluid is assumed to be
in equilibrium and confined in a large disk drawn on the pseudosphere.
The grand-canonical ensemble is used: the fluid can freely exchange par-
ticles with a reservoir. Thus, the total charge Q may fluctuate. Further-
more, there are charge correlations which, near the circle boundary of the
disk, can be described as correlations of a surface charge density s. The
aims of the present paper are to compute the variance of Q and the two-
point correlation function of s. It will be shown that these quantities are
universal (i.e., independent of the microscopic nature of the fluid). These
universal results will be checked on two exactly solvable models: the two-
component plasma, made of two species of particles of opposite signs, and the
one-component plasma, made of one species of particles in a neutralizing
background.

These problems have already been studied and solved in a flat space.
For a finite two-dimensional Coulomb fluid in a plane, the total charge Q
essentially does not fluctuate. (3) Furthermore, in the case of a large disk of
radius R centered at the origin, the surface charge correlation function (4) is
given by the universal expression

bOs(j) s(0)PT=−
1

2p2[2R sin(j/2)]2
(1.1)

where b is the inverse temperature, s(j) the surface charge density on the
boundary circle at the point of polar angle j, and O · · ·PT is a truncated
statistical average. These results have been checked on exactly solvable
models. (3, 5)

Here, the same problems are considered, now on a pseudosphere. In
Section 2, some basic properties of the pseudosphere and of Coulomb’s law
on it are recalled. In Section 3, macroscopic electrostatics on a pseu-
dosphere is used for determining the variance of the total charge Q and the
correlation function of the surface charge density s. In Section 4, the
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results are checked on a solvable model, the two-component plasma at a
special temperature. In Section 5, the results are checked again on another
solvable model, the one-component plasma at a special temperature.

2. PSEUDOSPHERE AND COULOMB’S LAW

Let us recall a few properties of the surface of constant negative cur-
vature called a pseudosphere. Such a surface is a two-dimensional mani-
fold, the entirety of which cannot be embedded in three-dimensional
Euclidean space. Its properties are defined by its metric. Several sets of
coordinates are commonly used.

The one which renders explicit the resemblance with the sphere is
(y, j) with y ¥ [0,.[ and j ¥ ]−p, p], the metric being

ds2=a2(dy2+sinh2 y dj2) (2.1)

where −1/a2 is the Gaussian curvature (instead of 1/R2 for a sphere of
radius R). The geodesic distance s between two points at (y, j) and (yŒ, jŒ)
is given by

cosh(s/a)=cosh y cosh yŒ− sinh y sinh yŒ cos(j−jŒ) (2.2)

In particular, the geodesic distance of the point (y, j) to the origin is ay.
The Laplace–Beltrami operator is

D=
1
a2
1 1
sinh y

“

“y
sinh y

“

“y
+

1
sinh2y

“
2

“j2
2 (2.3)

The set of points at a geodesic distance from the origin less than or equal
to R=ay0 will be called a disk of radius R. Its boundary will be called a
circle of radius R. Its circumference is

C=2pa sinh y0 (2.4)

and its area is

A=4pa2 sinh2(y0/2) (2.5)

It is remarkable that, for a large radius, both the circumference and the
area are proportional to exp y0: the neighborhood of the boundary circle
has an area of the same order of magnitude as the whole area!
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Another often used set of coordinates is (r, j) with r/(2a)=
tanh(y/2). Then, the metric is

ds2=
dr2+r2 dj2

(1− r2

4a2
)2

(2.6)

When these coordinates are used, the whole (infinite) pseudosphere maps
on a disk of radius 2a, the Poincaré disk.

Finally, here it will be convenient to use also the coordinates (E, j)
with

tanh(y/2)=e−E (2.7)

Then the metric is

ds2=
a2

sinh2E
(dE2+dj2) (2.8)

and the Laplace–Beltrami operator has the simple form

D=
sinh2 E

a2
1 “2
“E2

+
“
2

“j2
2 (2.9)

The Coulomb potential v(s) at a geodesic distance s from a unit point
charge obeys the Poisson equation

Dv(s)=−2p d (2)(s) (2.10)

where d (2) is the Dirac distribution on the pseudosphere. The solution of
(2.10) which vanishes at infinity is

v(s)=− ln tanh
s
2a

(2.11)

3. MACROSCOPIC ELECTROSTATICS, CHARGE FLUCTUATIONS,

SURFACE CHARGE CORRELATIONS

3.1. Two Problems in Macroscopic Electrostatics

Here are two problems, the solution of which will be needed in the
following. On the pseudosphere, an ideal conductor fills the disk of radius
R=ay0 centered at the origin.
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Capacitance. The first problem, a very simple one, is: What is the
capacitance of this disk? If the disk carries a charge Q, this charge uni-
formly spreads on its circumference and, by Newton’s theorem (which can
be easily shown to be valid on a pseudosphere), generates on the whole
disk the constant electric potential Q v(R)=−Q ln tanh(y0/2). Therefore,
the capacitance is

C=−
1

ln tanh y02
(3.1)

In the large-disk limit y0 Q., C ’ exp(y0)/2).

A Point Charge in the Presence of the Disk. The second problem
is: A unit point charge is located, outside the disk, at point (yŒ, jŒ=0). The
disk is grounded (i.e., kept at zero potential). What is the electric potential
f(y, j; yŒ) at some point (y, j), outside the disk? The method of images,
which can be used for a flat disk, does not seem to work on a pseu-
dosphere, and a Fourier expansion will be used.

The potential due to the unit point charge alone is (2.11). Expressing
this potential in terms of cosh(s/a), using (2.2), and expanding as a Fourier
series in j (in the case y < yŒ which suffices for our purpose) gives

v(s)=EŒ+C
.

a=1

2 sinh EŒae−Ea

a
cos aj (y0 < y < yŒ) (3.2)

where we have gone from the variables y and yŒ to the variables E and EŒ
defined by (2.7) and its analog for EŒ. Using (2.9), one easily checks that the
Laplacian of each term of (3.2) vanishes.

The full potential in the presence of the disk is obtained by adding to
(3.2) terms of zero Laplacian symmetrical in E and EŒ: a term of the form
A0EŒE, and terms of the form Aa sinh EŒa sinh Ea cos aj. These terms do
vanish when y or yŒ goes to infinity. The coefficients Aa are determined by
the condition that the potential vanishes on the disk, i.e., when y=y0. The
result is

f(y, j; yŒ)=EŒ−
EEŒ

E0
+C

.

a=1
2 sinh EŒa 1e−Ea− e−E0a

sinh E0a
sinh Ea2 cos aj

a
(3.3)

where E0 is related to y0 by the analog of (2.7).

3.2. Charge Fluctuations

The disk of radius R=ay0 centered at the origin is filled with a
Coulomb fluid. It can freely exchange charges with a reservoir located at
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infinity (grand canonical ensemble). If macroscopic electrostatics is
applicable, what is the variance of the charge Q carried by the disk?

The same reasoning as in the flat space case, (3) using linear response
theory, gives for the variance

bOQ2PT=C (3.4)

where here the capacitance C is given by (3.1). This result (3.4) just says
that the variation of the energy Q2/2C has the usual thermal average
(1/2) b−1. In the large-disk limit y0 Q.,

bOQ2PT ’
ey0

2
’

C

2pa
(3.5)

3.3. Surface Charge Correlations

In three dimensions, macroscopic electrostatics deals with volume
charge densities and surface charge densities. In the present case of a two-
dimensional system (a disk), the analog of the surface charge density
actually is a charge per unit length on the boundary circle; we shall never-
theless still call it a surface charge density s(j). If macroscopic electro-
statics is applicable, what is the two-point correlation function of s(j)?

The same reasoning as in the case of a flat space, (4) using linear
response theory, gives for the two-point correlation function

bOs(j) s(0)PT=−
1

(2pa)2
1“2f(y, j; yŒ)
“y “yŒ
2
y=yŒ=y0

(3.6)

where f(y, j; yŒ) is the electric potential (3.3).
The second derivative in (3.6) can be expressed in closed form in terms

of the Jacobi theta (6) function h1. For the sake of dealing only with con-
vergent series, from (3.3) one first computes the second derivative for
yŒ > y0, i.e., EŒ < E0:

1“2f(y, j; yŒ)
“y“yŒ
2
y=y0

=−2 sinh E0 sinh EŒ 1 1
2E0

+C
.

a=1

cosh EŒa
sinh E0a

a cos aj2 (3.7)

For taking the limit of (3.7) when yŒQ y0, one substracts from and adds to
cosh EŒa/sinh E0a a term e−(E0 − EŒ)a. The limit of one of the two resulting
series is computed after the summation has been performed:

lim
EŒQ E0

C
.

a=1
e−(E0 − EŒ)aa cos aj=−

1
4 sin2 j2

(3.8)

210 Jancovici and Téllez



The other series involves (cosh EŒa/sinh E0a)− e−(E0 − EŒ) a. It remains abso-
lutely convergent when the limit EŒ=E0 is taken in each term. Thus

1“2f(y, j; yŒ)
“y“yŒ
2
y=yŒ=y0

=−2 sinh2 E0 1
1
2E0

−
1

4 sin2 j2
+2 C

.

a=1

e−2E0a

1−e−2E0a
a cos aj2

(3.9)

The sum in (3.9) can be expressed in terms of the Jacobi h1 function,
since (6)

h −1(v, q)
h1(v, q)

=p cot pv+4p C
.

a=1

q2a

1−q2a
sin 2apv (3.10)

Setting v=j/(2p) and q=e−E0 in (3.10), and using its derivative with
respect to j in (3.9) gives for the correlation function (3.6) the closed form

bOs(j) s(0)PT=
1

(2pa)2
sinh2 E0 5

1
E0
+

1
p

d
dj
h −1(

j
2p , e

−E0)
h1(

j
2p , e

−E0)
6 (3.11)

In the flat-space limit a Q., y0 Q 0, for a fixed value of R=ay0, it
can be checked that (1.1) is recovered. More interestingly, in the opposite
limit of a radius R large compared to the ‘‘curvature radius’’ a, i.e., when
y0 Q. and E0 Q 0, (3.11) takes a simpler form. Indeed, after a Jacobi
imaginary transformation, (6, 7) the h1 function can be expressed as the series

h1 1
j

2p
, e−E0 2=1 p

E0
21/2 C

n=.

n=−.
(−1)n exp 5−p

2

E0
1 j
2p

−
1
2
+n2

26 (3.12)

If 0 < |j| < p, in the small-E0 limit (E0 ’ 2e−y0), the first two leading terms of
the series (3.12) are n=0 and n=1. When only these terms are kept, to
first order in their ratio exp(−p |j|/E0), (3.11) becomes

bOs(j) s(0)PT ’ −
1

2a2
exp 1 − ey0p |j|

2
2 (0 < |j| < p) (3.13)

4. TWO-COMPONENT PLASMA ON A PSEUDOSPHERE

The total charge fluctuation and the surface charge correlation have
been obtained under the assumption that macroscopic electrostatics is
valid. In the large-disk limit R ± a, these results (3.5) and (3.13) will now
be checked on two solvable microscopic models. Such checks are welcome,

Coulomb Fluid in a Disk on a Pseudosphere 211



because a two-dimensional case when macroscopic electrostatics is not
valid, unexpectedly at first sight, is known: the charge fluctuations in a
short-circuited circular condenser. (3)

Macroscopic electrostatics uses the concept of surface charge density.
Actually, in a microscopic model, this ‘‘surface density’’ will have some
microscopic thickness, and for macroscopic electrostatics to be valid, it is
necessary that this thickness be negligible compared to the macroscopic
lengths. The microscopic model which will be used in the present section is
the two-component plasma at a special temperature. Its microscopic scale
is characterized by a fugacity z, with the dimension (length)−2. In a disk of
radius R on a pseudosphere with the ‘‘radius of curvature’’ a, there are two
dimensionless parameters involving z: za2 and zR2. Necessary conditions
for macroscopic electrostatics to be valid is that both these parameters be
large compared to 1. Here, for simplicity, the disk is assumed to be large
(R± a).

4.1. Review of the General Formalism

The two-component plasma is a system of two species of particles, of
charges ±1. At the special inverse temperature b=2, the model is exactly
solvable in different geometries, in particular on a pseudosphere. (9) For the
sake of completeness, the method of solution is briefly revisited, in a form
simpler than in the original papers, by a generalization of what has been
done in the case of a one-component plasma. (8)

In terms of the coordinates (r, j) (the Poincaré disk representation),
the Coulomb interaction (2.11) between two unit point charges at ri and rj
is

v(s)=− ln : (zi−zj)/(2a)

1−
ziz̄j

4a2

: (4.1)

where zj is the complex coordinate of particle j (and z̄j its complex conju-
gate): zj=rje ijj. The interaction (4.1) happens to be the Coulomb interac-
tion in a flat disk of radius 2a with ideal conductor walls at zero potential.
Therefore, one can use the techniques which have been developed (10, 11) for
dealing with ideal conductor walls.

When b=2, the Boltzmann factor for N+ positive particles with
vector coordinates r+i and corresponding complex coordinates z+i ,
1 [ i [ N+, and N− negative particles with vector coordinates r−i and cor-
responding complex coordinates z−i , 1 [ i [ N− , can be written as (with, for
the time being, 2a taken as the unit of length: 2a=1)
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BN+, N−=

<1 [ i < j [N+ (z+i −z+j )(z̄
+
i −z̄+j ) <1 [ k < l [N− (z−k −z−l )(z̄

−
k −z̄−l )

×<N+
m=1 <N−

n=1 (1−z+m z̄−n )(1− z̄+mz
−
n )

<1 [ i < j [N+ (1−z+i z̄+j )(1− z̄+i z
+
j ) <1 [ k < l [N− (1−z−k z̄

−
l )

×(1− z̄−k z
−
l ) <N+

m=1 <N−
n=1 (z

+
m −z−n )(z̄

+
m −z̄−n )

(4.2)

(in the cases N+=0 and N−=0, the corresponding products in (4.2)
should be replaced by 1; in particular B(0, 0)=1). It is convenient to define

B −N+, N−=
BN+, N−

<N+
m=1 <N−

n=1(1−z+m z̄
+
m)(1−z−n z̄

−
n )

(4.3)

BŒ is the Boltzmann factor in a disk with ideal conductor walls at zero
potential, including now in its denominator the contribution from the
interaction of each particle with its own image. BŒ has the advantage that it
can be written as a N×N determinant (N=N++N− is the total number of
particles), by using the Cauchy identity

<1 [ i < j [N (ui−uj)(vi−vj)
<N
i=1 <N

j=1 (ui−vj)
=(−1)N(N−1)/2 det 1 1

ui−vj
2
i, j=1, ..., N

(4.4)

Indeed, choosing

ui=z+i , vi=1/z̄+i , 1 [ i [ N+

ui+N+=1/z̄−i vi+N+=z−i , 1 [ i [ N−
(4.5)

in (4.4) gives, after some simple manipulations and the reestablishment of
an arbitrary value of 2a, a N×N determinant

B −N+, N−=det Aij (4.6)

where

Aij=
4a2

4a2−z+i z̄
+
j

if 1 [ i, j [ N+

Aij=
2a

z+i −z−j−N+
if 1 [ i [ N+ and N+ < j [ N

Aij=
2a

z̄−i−N+ −z̄+j
if N+ < i [ N and 1 [ j [ N+

Aij=
4a2

4a2−z̄−i−N+z
−
j−N+

if N+ < i, j [ N

(4.7)
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If the (perhaps different) fugacities are z+ and z− for the positive and nega-
tive particles, respectively, the grand partition function can be written as

X= C
.

N+=0
C
.

N−=0

1
N+!N− !

F D
N+

m=0
d2r+m z+(r

+
m) D

N−

n=0
d2r−n z+(r

−
n ) B

−

N+, N− (4.8)

Indeed, one of the factors [1−(r2/4a2)]−1 in the area element on the
pseudosphere dS=[1−(r2/4a2)]−2 d2r has been incorporated into the
definition (4.3) of BŒ, while the other factor [1−(r2/4a2)]−1 has been
incorporated in the definition of position-dependent fugacities

z± (r)=
z±

1− r2

4a2

(4.9)

Although the integrals in the grand partition function (4.8) diverge (as the
separation between a positive particle and a negative one goes to zero), this
grand partition function can be formally manipulated for providing finite
correlation functions.

It will now be shown that the grand canonical partition function can
be expressed as one determinant of an infinite matrix, continuous in coor-
dinate space. First, one considers the functional integral

Z0=F Dk Dk̄ F exp 5F C
s, sŒ=±

k̄s(r)(M−1)ssŒ (r, rŒ) ksŒ(rŒ) d2r d2rŒ6 (4.10)

The fields k and k̄ are two-component Grassmann variables (anticommut-
ing variables). The components of k are called k+ and k− , and similarly for
k̄. The covariance of the Gaussian measure in (4.10) is the inverse of the
kernel M−1, which is chosen such that

Ok̄s(r) ksŒ(rŒ)P=MssŒ(r, rŒ) (4.11)

where O · · ·P denotes an average taken with the Gaussian weight of (4.10)
and the 2×2 matrix M is

M(r, rŒ)=RM++ M+−

M−+ M− −
S=R

4a2

4a2−zz̄ Œ
2a
z−zŒ

2a
z̄− z̄ Œ

4a2

4a2− z̄zŒ

S (4.12)

Second, one considers the functional integral

Z=F Dk Dk̄ F exp 5F C
s, sŒ=±

k̄s(r)(M−1)ssŒ (r, rŒ) ksŒ(rŒ) d2r d2rŒ

+F [z+(r) k̄+(r) k+(r)+z−(r) k̄−(r) k−(r)] d2r6 (4.13)
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and one expands Z/Z0 in powers of z+(r) and z−(r) as

Z
Z0

= C
.

N+=0
C
.

N−=0

1
N+!N− !

F D
N+

m=0
d2r+m z+(r

+
m) D

N−

n=0
d2r−n z+(r

−
n )

×Ok̄+(r
+
1 ) k+(r

+
1 ) · · · k̄+(r

+
N+ ) k+(r

+
N+ )

× k̄−(r
+
1 ) k−(r

+
1 ) · · · k̄−(r

−
N− ) k−(r

−
N− )P (4.14)

Third, from the Wick theorem for anticommuting variables (14) and the
covariance (4.11), it results that the average in (4.14) is equal to the deter-
minant of the matrix Aij defined in (4.7), i.e., to B −N+, N− as given by (4.6).
Therefore (4.14) is identical to (4.8). The grand partition function of the
Coulomb gas is

X=
Z
Z0

(4.15)

Finally, Z0=det(M−1) and Z=det(M−1+z). In these determinants of
infinite order, the matrix elements of M are labeled both by the discrete
charge indices s, sŒ and the continuous indices r, rŒ. The infinite diagonal
matrix z is defined as

z=Rz+(r) 0
0 z−(r)
S (4.16)

Therefore (4.15) does give the grand partition function as the determinant
of an infinite matrix, continuous in coordinate space:

X=det[M(M−1+z)]=det(1+Mz) (4.17)

For computing the densities and many-body densities, some defini-
tions are needed. Let us define

G̃=(1+Mz)−1M/(4pa) (4.18)

(the factor (4pa) is there just for keeping the same notation as in previous
papers). Thus, G̃ is the solution of (1+Mz) G̃=M/(4pa) or, more expli-
citely, G̃ obeys the integral equation

G̃(r, rŒ)+F M(r, rœ) z(rœ) G̃(rœ, rŒ) drœ=
1

4pa
M(r, rŒ) (4.19)
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where it should be remembered that G, M, z are 2×2 matrices. We also
define

G(r, rŒ)=11− r2

4a2
21/2 G̃(r, rŒ) 11− rŒ2

4a2
21/2 (4.20)

On (4.12), one sees the symmetries MssŒ(r, rŒ)=ssŒM̄sŒs(rŒ, r). By formally
expanding the definition G̃=(1+Mz)−1M/(4pa) in powers of Mz one
finds that G̃ has the same symmetries, which also hold for G:

GssŒ(r, rŒ)=ssŒḠsŒs(rŒ, r) (4.21)

The density ns(r) of particles of sign s is given from the grand partition
function by a functional derivation:

ns(r)=11−
r2

4a2
22 zs(r)

d ln X
dzs(r)

(4.22)

where the factor [1−(r2/4a2)]2 insures that ns(r) dS is the average number
of particles in the area element dS=[1−(r2/4a2)]−2 d2r. Since, from
(4.17), ln X=Tr(1+Mz), (4.22), (4.18), and (4.20) give

ns(r)=4pzsaGss(r, r) (4.23)

(actually, for point particles, this density is infinite, but it can be made
finite by the introduction of a small hard core). The two-body density
Ursell functions are given by

UssŒ(r, rŒ)=11−
r2

4a2
22 11− rŒ2

4a2
22 zs(r) zsŒ(rŒ)

d2 ln X
dzs(r) dzsŒ(rŒ)

(4.24)

Taking into account the symmetry relations (4.21) gives

UssŒ(r, rŒ)=−ssŒ(4pzsa)(4pzsŒa) |GssŒ(r, rŒ)|2 (4.25)

From now on, we restrict ourselves to the case of equal fugacities
z+=z−=z. In the Poincaré disk representation, the Coulomb fluid fills a
disk of radius r0. Thus, z(r)=0 when r > r0. The radius r0 is related to the
geodesic radius R=ay0 by r0=2a tanh(y0/2). Without loss of generality
we can choose the polar angle of rŒ as jŒ=0.
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The integral equation (4.19) can be tranformed into a differential one,
by the application of the operator “/=sx“x+sy“y, where sx and sy are
Pauli matrices:

[“/+4paz(r)] G̃(r, rŒ)=d (2)flat(r− rŒ) (4.26)

where d (2)flat is the Dirac distribution in the plane. This differential equation
is to be supplemented by the condition that G̃(r, rŒ) be continuous at the
disk boundary r0 and by the boundary condition, seen on (4.19), that when
r=2a, G̃−+=e ijG̃++ (and a similar boundary relation between G̃+− and
G̃−− ).

In the case of an infinite system, eq.(4.26) could be solved, (9) for rŒ=0,
in terms of hypergeometric functions. In the present case of a finite disk,
i.e., when r0 < 2a, an exact explicit solution of (4.26) for an arbitrary fuga-
city seems difficult to obtain. Fortunately, here we only need the large-
fugacity limit, in which case there are important simplifications.

4.2. Large Fugacity

For a flat system, the Coulomb interaction (2.11) becomes − ln(s/2a)
where 2a is an irrelevant length scale which only contributes an additive
constant to the potential. In the flat case, (12) the rescaled fugacity m=4pza
(which has the dimension of an inverse length) was introduced, and the
correlation length was found to be of the order of m−1. In the present case
of a system on a pseudosphere, it is convenient to keep the same definition
of m.

On a pseudosphere, in the large fugacity limit 4pza2=ma± 1, if we
are interested in a solution of (4.26) only in a region of size m−1, the curva-
ture can be neglected and the flat system solutions can be used, with
appropriately rescaled coordinates. In particular, if both r and rŒ are suffi-
ciently close to r0, the variation of z(r) can be neglected: in (4.20) and
(4.26), z(r) can be replaced by the constant z(r0). Here, we assume the disk
to be large, and therefore z(r0) ’ zey0/4. Furthermore (4.20) becomes

G̃(r, rŒ)=
ey0

4
G(r, rŒ) (4.27)

In terms of the rescaled variables (ey0/4) r=t and (ey0/4) rŒ=tŒ, (4.27) and
(4.26) do give the flat system equation (12)

[“/t+m] G(r, rŒ)=d (2)flat(t− tŒ) (4.28)
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In an infinite system, the (++) and (−+) elements of the solution of
(4.28) would be G++(r, rŒ)=(m/2p) K0(m |t− tŒ|) and G−+(r, rŒ)=(m/2p)
e ikK1(m |t− tŒ|) where K0 and K1 are modified Bessel functions and k is the
argument of te ij−tŒ. In the present case of a finite system in a disk, a
‘‘reflected wave’’ must be added. As a Fourier series in j, G++ is of the
form

G++(r, rŒ)=
m
2p

C
.

a=−.
[Ia(mtŒ) Ka(mt)+aaIa(mtŒ) Ia(mt)] e iaj (tŒ < t < t0)

(4.29)

where t0=(ey0/4) r0. The first term in the sum corresponds to an expan-
sion (6) of K0(m |t− tŒ|). The second term corresponds to the ‘‘reflected
wave.’’ The coefficients aa are to be determined by the continuity and
boundary conditions. Similarly,

G−+(r, rŒ)=
m
2p

C
.

a=−.
[Ia(mtŒ) Ka+1(mt)−aaIa(mtŒ) Ia+1(mt)] e i(a+1) j

(tŒ < t < t0) (4.30)

The corresponding elements of G̃ are given by (4.27). There are similar
expansions in the case t < tŒ < t0.

The coefficients aa will now be determined. When tŒ < t0 < t, (4.26)
reduces to “/G̃(r, rŒ)=0 which means that G̃++ is an analytic function of z
and G̃−+ an antianalytic function. Therefore, as a function of z=re ij, G̃++
is of the form

G̃++= C
.

a=−.
barae iaj (tŒ < t0 < t) (4.31)

Taking into account the boundary condition G̃−+=e ijG̃++ at r=2a gives

G̃−+= C
.

a=−.
ba(2a)2a+1

e i(a+1) j

ra+1
(tŒ < t0 < t) (4.32)

For a large disk, r0=2a tanh(y0/2) ’ 2a exp(−2e−y0). The continuity of
G++ and G−+ at r=r0 determines the coefficients aa and ba. One finds

aa=
exp[−(2a+1) 2e−y0] Ka+1(mt0)−Ka(mt0)
exp[−(2a+1) 2e−y0] Ia+1(mt0)+Ia(mt0)

(4.33)
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In the present large-fugacity limit, the Bessel functions in (4.29), (4.30),
and (4.33) can be replaced by their asymptotic forms Ia(x) ’ (2px)−1/2 ex

and Ka(x) ’ (p/2x)1/2 e−x. Then, whatever the relative order of t and tŒ
might be,

G++(r, rŒ) ’
1

4pt0
C
.

a=−.
{e−m |t−tŒ|− e−m(2t0 −t−tŒ)

× tanh[(2a+1) e−y0]} e iaj (t, tŒ < r0) (4.34)

and

G−+(r, rŒ) ’
1

4pt0
C
.

a=−.
{e−m |t−tŒ|+e−m(2t0 −t−tŒ)

× tanh[(2a+1) e−y0]} e i(a+1) j (t, tŒ < r0) (4.35)

It should be recalled that these expressions are valid only near the bound-
ary circle.

4.3. Charge Fluctuations

For the present model, by symmetry OQP=0 and the variance of the
total charge is

OQ2P=F
r, rŒ < r0

r (2)(r, rŒ) dS dSŒ+F
r < r0

n(r) dS (4.36)

where r (2)(r, rŒ) is the two-body charge density, n(r) the total particle
density, and dS an area element on the pseudosphere. In the bulk, perfect
screening is expected, and furthermore r (2)(r, rŒ) has a range in the geodesic
distance between r and rŒ of the order of m−1 only. Therefore, the only
contributions to (4.36) come from r and rŒ close to r0. When both r and rŒ
are in the bulk (i.e., smaller enough than r0), r (2) becomes a function r (2)bulk
and it is convenient to define a surface part by r (2)(r, rŒ)=
r (2)bulk(r, rŒ)+r

(2)
surf(r, rŒ). Similarly, the density can be decomposed as

n(r)=nbulk+nsurf(r). Assuming that perfect screening occurs in the bulk
means

F r (2)bulk(r, rŒ) dS+nbulk=0 (4.37)
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where the integral extends on the whole pseudosphere. Using (4.37) allows
to rewrite (4.36) as

OQ2P=−F
rŒ < r0 < r

r (2)bulk(r, rŒ) dS dSŒ+F
r, rŒ < r0

r (2)surf(r, rŒ)+F
r < r0

nsurf(r) dS
(4.38)

Because of the symmetry between positive and negative particles, r (2)(r, rŒ)=
2[U++(r, rŒ)−U−+(r, rŒ)] with the Ursell functions given by (4.25) and
n(r)=2n+(r) with n+ given by (4.23). Thus, (4.36) becomes

OQ2P=−2m2 F
r, rŒ < r0

[|G++(r, rŒ)|2+|G−+(r, rŒ)|2] dS dSŒ

+2m F
r < r0

G++(r, r) dS (4.39)

Using the Fourier series (4.34) and (4.35) in (4.39), and taking into account
that in |GssŒ |2 only the term independent of j survives the angular integra-
tion, gives

OQ2P=−
4m2

(4pt0)2
F
t, tŒ < t0

C
.

a=−.
{e−2m |t−tŒ|+e−2m(2t0 −t−tŒ)

× tanh2[(2a+1) e−y0]} dS dSŒ

+
2m
4pt0

F
t < t0

C
.

a=−.
{1− e−2m(t0 −t)tanh[(2a+1) e−y0]} dS (4.40)

The first term in each sum corresponds to r (2)bulk and nbulk, respectively, and
therefore the second term corresponds to r (2)surf and nsurf, respectively. Using
(4.38) rather than (4.36) gives instead of (4.40)

OQ2P=−
4m2

(4pt0)2
C
.

a=−.

3 −F
tŒ < t0 < t

e−2m(t−tŒ) dS dSŒ

+F
t, tŒ < t0

e−2m(2t0 −t−tŒ) tanh2[(2a+1) e−y0] dS dSŒ4

−
2m
4pt0

C
.

a=−.
F
t < t0

e−2m(t0 −t) tanh[(2a+1) e−y0] dS (4.41)
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The integrands are indeed localized near the boundary circle. Using
dS ’ t0 dt dj and performing the integrations gives

OQ2P=1
4 C

.

a=−.
{1− tanh2[(2a+1) e−y0]}− 1

2 C
.

a=−.
tanh[(2a+1) e−y0] (4.42)

Finally, as y0 becomes large, the sums can be expressed as integrals on the
variable x=(2a+1) e−y0. Since tanh x is an odd function, the second sum
can be considered as vanishing (actually, there are convergence factors at
aQ ±., which have been omitted when the Bessel functions have been
replaced by their asymptotic forms at fixed a). One is left with

OQ2P=
ey0

8
F
.

−.
(1− tanh2 x) dx=

ey0

4
(4.43)

in agreement with the macroscopic result (3.5), since here b=2.

4.4. Surface Charge Correlations

The first term in (4.34) or (4.35) corresponds to the bulk contribution
(m/2p) K0(m |t− tŒ|) or (m/2p) e ikK1(m |t− tŒ|), respectively. The range
m−1 of these bulk contributions goes to zero in the large-fugacity limit.
Thus, for t ] tŒ, only the second term survives. Let us assume that the rele-
vant values of |j| are small. Since e−y0 is small for a large disk, after
(2a+1) e−y0 has been replaced by 2ae−y0 ’ E0a, the sum on a can be
expressed in terms of an integral:

C
.

a=−.
tanh(E0a) e iaj ’ i F

.

−.
tanh(E0a) sin(aj) da (4.44)

Here too, there are convergence factors as aQ ±., which have been
omitted when the Bessel functions were replaced by their asymptotic forms
at fixed a. These convergence factors can be taken into account by replac-
ing tanh(E0a) by sinh(E0a)/cosh(Ea) (with E > E0), performing the integral
which is a tabulated one, (13) and taking the limit EQ E0 afterwards. The
result defines the integral as

i F
.

−.
tanh(E0a) sin(aj) da=

ip
E0sinh

pj
2E0

(4.45)
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The range in j of this function is indeed of the order of E0, an a posteriori
justification of the above assumption that |j| is small. Using (4.44) and
(4.45), with |sinh(pj/2E0)| replaced by (1/2) exp p |j|/2E0), in (4.34) and
(4.35) gives for the two-body charge density near the disk boundary

r (2)(r, rŒ)=−2m2[|G++(r, rŒ)|2+|G−+(r, rŒ)|2]

=−
m2

a2
e−2m(2t0 −t−tŒ) exp 1 − ey0p |j|

2
2 (4.46)

where E0 ’ 2e−y0 and t0 ’ aey0/2 have been used. This two-body charge
density is indeed localized near the disk boundary. The surface charge
correlation is defined as

Os(j) s(0)P=F
t0

−.
dt F

t0

−.
dtŒ r (2)(r, rŒ) (4.47)

Using (4.46) in (4.47) and performing the integrals reproduces the macro-
scopic result (3.13), since here b=2 and Os(j)P=0.

5. ONE-COMPONENT PLASMA ON A PSEUDOSPHERE

The macroscopic results (3.5) and (3.13) will now be checked on
another solvable model, the one-component plasma. This is a system of one
species of particles, of charges +1, embedded in a uniform background
carrying the negative charge density −nb. At the inverse temperature b=2,
the system is exactly solvable in a variety of geometries, in particular for a
large disk of radius R=ay0 on a pseudosphere. (8) A grand canonical
ensemble is used. For the grand partition function to be convergent, it is
necessary todefine itwith a fixedvalue(2)of thebackgroundchargedensity −nb;
the fugacity z controls the number of particles. Thus, in general, the system
is not globally neutral, except for a particular choice of the fugacity.

In the bulk the properties of the system are controlled by the back-
ground: the particle number density away from the boundary is nb.
However, near the boundary, the particle density differs from nb, and, since
on a pseudosphere the neighborhood of the boundary has an area of the
same order of magnitude as the whole area, this neighborhood gives an
important contribution to the total number of particles and thus to the
total charge of the system.

The macroscopic results (3.5) and (3.13) are expected to be valid only
when the microscopic thickness of the surface charge density goes to zero.
How to reach this regime in the most general way by varying both param-
eters nb and z has not been clear to us. Here we content ourselves by
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considering the limit zQ. for a fixed value of nb. In this limit, the total
charge of the system is expected to become infinite and to be carried by an
infinitely thin surface layer.

5.1. Summary of Previous Results(8)

Again, for two points in the Poincaré disk at r=(r, j) and rŒ=(rŒ, 0),
one defines an auxiliary quantity G(r, rŒ), which now is just a scalar
(instead of a 2×2 matrix). In the case of a large disk of radius R=ay0,
y0 Q.,

G(r, rŒ)=z 1e
y0+1

4
2a 11− r2

4a2
2 (a+1)/2 11− rŒ2

4a2
2 (a+1)/2

× C
.

a=0

1 rrŒ
4a2
2a e iaj

1+4pa2zea C(a, x)
xa

(5.1)

where a=4pnba2, x=4ae−y0, and C(a, x) is the incomplete Gamma
function

C(a, x)=F
.

x
ta−1e−t dt (5.2)

The particle number density was found to be

n(r)=G(r, r) (5.3)

By a similar calculation, one finds for the two-body density Ursell function

U(r, rŒ)=−|G(r, rŒ)|2 (5.4)

In (5.1), r/(2a)=tanh(y/2). Only the case y large (r close to the
boundary of the disk) will be needed. Then 1−[r/(2a)]2 ’ 4e−y and
[r/2a]a ’ exp(−2ae−y). Let us assume that the relevant values of |j| are
small compared to 1. Then the sum on a can be replaced by an integral on
x=4ae−y0. This gives for the density as a function of the distance (in units
of a) from the boundary l=y0− y

n(l)=G(r, r)=zeae (a+1) l F
.

0

e−xe
l

dx
1+4pa2zea C(a, x)

xa
(5.5)
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Integrating n(l) gives the average number of particles

ONP=A zea F
.

0

C(a, x) dx
xa+4pa2zeaC(a, x)

(5.6)

5.2. Charge Fluctuations

For the one-component plasma the charge fluctuations are identi-
cal (for particles of charge +1) to the particle number fluctuations
OQ2PT=ON2PT, since the background charge does not fluctuate. The
charge fluctuations can be obtained either by integrating the correlation
function (see Eq. (5.4)) or by using the thermodynamic relation

ON2PT=z
“ONP

“z
(5.7)

This gives for a large disk

OQ2PT=
ey0

4
F
.

0

gxaC(a, x)
(xa+gC(a, x))2

dx (5.8)

where we have defined the dimensionless parameter g=4pa2zea. For any
finite value of z and nb the integral in the last equation is different from 1,
thus the predictions of macroscopic electrostatics are not satisfied. This is
indeed expected since in general we are out of the validity domain of
macroscopic electrostatics. As explained above, we expect the results from
macroscopic electrostatics to be valid only if the thickness of the layer of
charge near the boundary is negligible compared to the macroscopic
lengths: the radius of the disk R and the radius of curvature a. For the two-
component plasma the thickness T of this layer is of order of the inverse of
the fugacity m−1=(4paz)−1. For the one-component plasma we shall show
that the situation is somehow different.

Thus, before proceeding to study the charge fluctuations in the large-
fugacity limit, let us study first how the thickness T of the charged layer
near the boundary depends on g in this limit, since the situation is not as
simple as it is for the two-component plasma. We will show that indeed T
vanishes when g Q..

For simplicity let us consider the case when a=1. In units of a the
thickness of the charged layer can be defined as the first moment of the
density profile properly normalized

T=
>.0 n(l) le−l dl
>.0 n(l) e−l dl

=
>.0 n(l) le−l dl

n
(5.9)
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where n=ONP/A is the average particle density. The e−l factor comes
from the area element dS=2pa2 sinh y dy near the boundary. For a=1 the
density profile (5.5) becomes

n(l)=nbe2l F
.

0

gxe−xe
l

x+ge−x
dx (5.10)

and the average density is given by

n
nb

=F
.

0

ge−x

x+ge−x
dx (5.11)

Let us define xm as the principal solution of g=xmexm; incidentally, the
function xm(g) is the Lambert function, which has many applications. (15)

Now we write

n
nb

=1Fxm
0

+F
.

xm

2 dx
1+ x

xm
ex−xm

(5.12)

In the first integral (x < xm) the second term in the denominator is
negligible when g Q. and then the integrand is 1. After the change of
variable x Q xm+x, the second integral (x > xm) is easily shown to have the
limit ln 2. This gives in the limit g Q.

n
nb

’ xm+ln 2 ’ xm (5.13)

On the other hand, replacing expression (5.10) for the one-body density
n(l) into the first moment of the density and performing the integral over l
gives

F
.

0
n(l) le−l dl=nb F

.

0

gC(0, x)
x+ge−x

dx (5.14)

Again it is convenient to cut the integral in two intervals for x < xm and
x > xm. As in the case for n when g Q. the second integral is negligible
compared to the first. Then

F
.

0
n(l) le−l dl ’ nb F

xm

0

exC(0, x)
1+ x

xm
ex−xm

dx

’ nb F
xm

0
exC(0, x) dx=c+exmC(0, xm)+ln xm (5.15)

Coulomb Fluid in a Disk on a Pseudosphere 225



where c 4 0.577 is the Euler constant. Since, when xm Q., C(0, xm) ’
e−xm/xm, the dominant term for the first moment of the density is the third
term in the preceding equation

F
.

0
n(l) le−l dl ’ nb ln xm (5.16)

Finally the thickness of the layer of charge near the boundary behaves as

T ’
1
xm

ln xm Q 0 (5.17)

when xm Q.. Remembering that xmexm=g=4pa2zea one can notice that
the dependence of the thickness on the fugacity is not trivial. It vanishes
when zQ. but very slowly contrarily to the case of the two-component
plasma where T ’ z−1.

Now we will proceed to prove that, in the limit g ± 1, the charge
variance (5.8) is equal to the prediction of macroscopic electrostatics (3.5).
To be as general as possible we consider again any value of a. One can
easily prove that the integrand in Eq. (5.8) is maximum when x=xm where
xm is now given by g=xam/C(a, xm) for any value of a. Doing the change
of variable x Q x−xm in the integral (5.8) and replacing g by its expression
in term of xm gives

OQ2PT=
ey0

4
F
.

−xm

(1+ x
xm
)a C(a, x+xm)C(a, xm)

[(1+ x
xm
)a+C(a, x+xm)

C(a, xm)
]2

dx (5.18)

When g Q. we have xm Q., C(a, xm) ’ xa−1m e−xm and

C(a, x+xm)
C(a, xm)

’ 11+ x
xm
2a−1 e−x (5.19)

Then

OQ2PT ’
ey0

4
F
.

−xm

(1+ x
xm
)a (1+ x

xm
)a−1 e−x

[(1+ x
xm
)a+(1+ x

xm
)a−1 e−x]2

dx (5.20)

We notice that for large values of |x| the integrand vanishes exponentially
as e−|x|. Then, since xm Q., we can replace the lower limit of the integral
by −. and neglect x/xm in front of 1. This gives

OQ2PT ’
ey0

4
F
.

−.

e−x dx
(1+e−x)2

=
ey0

4
(5.21)
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Since b=2, this is the expected result (3.5) obtained from macroscopic
electrostatics considerations.

5.3. Surface Charge Correlations

Under the assumption that the relevant values of |j| are small
compared to 1, the same manipulations as the ones leading to (5.5) give

G(r, rŒ)=zeae (a+1)
l+lŒ
2 F

.

0
dx

e−x
el+elŒ

2 e ix
ey0
4 j

1+g C(a, x)xa
(5.22)

where g=4pa2zea, l=y0− y, and lŒ=y0−yŒ.
Let us consider the case j > 0. We are interested in the behavior of

(5.22) as g Q.. This behavior will be shown to be determined by the pole
of the integrand closest to the real axis in the upper half-plane. Let us
assume that this pole has a large real part. Then, at this pole, C(a, x)
behaves as the first term xa−1e−x of its asymptotic expansion (13) and the
denominator in the integrand becomes 1+ge−x/x. Let us look for a zero of
this denominator at x=ip+xm. The equation for xm is (ip+xm) exm=g,
which becomes, in the large-g limit, xmexm=g. Thus, xm is large and real
and the assumption that the pole has a large real part is a posteriori
verified. The same reasoning gives other poles at x=(2n+1) ip+xm, n ¥ Z.
The residue of the pole at x=ip+xm is easily found to have a modulus
behaving as exp[−xm(el+elŒ)/2] exp[−pey0j/4].

Let I be the integral in (5.22). I is a part of an integral in the complex
plane, along a contour C: C follows the positive real axis from 0 to +., a
large quarter of circle from +. to +i., and comes back to the origin
along the imaginary axis from +i. to 0. The contribution from the large
quarter of circle at infinity is easily seen to vanish, and therefore the
contour integral is I−IŒ with IŒ the integral with x=iy pure imaginary
varying from 0 to i.:

IŒ=i F
.

0
dy

e−iy
el+elŒ

2 e−y
ey0
4 j

1+g C(a, iy)iy

(5.23)

For large g, IŒ is easily seen to be of order 1/g=e−xm/xm.
The theorem of residues says that I=IŒ+2pi× sum of the residues of

the poles inside C. IŒ is negligible (by a factor 1/xm) compared to the
residue of the pole at ip+xm. The residues of the other poles have a factor
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exp[−(2n+1) pey0j/4], n > 1 which makes them also negligible. A similar
reasoning holds in the case j < 0, and finally

|G(r, rŒ)| ’ 2pzeae (a+1)
l+lŒ
2 exp 5−xm

el+elŒ

2
6 exp 1−p e

y0

4
|j|2 (5.24)

This form of |G| a posteriori justifies the assumption that the relevant
values of j are small compared to 1. Furthermore, in view of the fast
decrease of |G| as a function of l or lŒ with a characteristic length 1/xm
(compare with the thickness of n(r) which was found to be (1/xm) ln xm), a
simpler form is

|G(r, rŒ)| ’ 2pzea exp 5−xm 11+
l

2
+
lŒ

2
26 exp 1−p e

y0

4
|j|2 (5.25)

The Ursell function is obtained by using (5.25) in (5.4):

U(r, rŒ) ’ −(2pzea)2 exp [−xm(l+lŒ)] exp(−2xm) exp 1−p
ey0

2
|j|2

(5.26)

The surface charge correlation is defined as

Os(j) s(0)PT=a2 F
.

0
dl F

.

0
dlŒ U(r, rŒ) (5.27)

Performing the integrations and using 4pa2zea=xmexm reproduces the
macroscopic result (3.13) at b=2.

6. CONCLUSION

The charge fluctuations for a two-dimensional classical Coulomb fluid
are drastically changed by the introduction of a negative curvature of
space.

In the case of a flat disk communicating with a reservoir (grand-
canonical ensemble), the total charge Q essentially does not fluctuate
(bringing an additional charged particle from infinity would cost an infinite
energy). In the macroscopic limit, one can define a surface charge density s
(charge per unit length on the boundary circle). The two-point correlation
function of s has an algebraic only decay (1.1), behaving as the inverse
square distance between the two points (while the charge correlation func-
tion in the bulk has a faster than algebraic decay).
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In the case of a disk on a pseudosphere (an infinite surface of constant
negative curvature), in the macroscopic limit, the total charge Q does fluc-
tuate with the variance (3.4). Furthermore the two-point correlation func-
tion of the surface charge density s has a fast (exponential) decay (3.13) as
a function of the angular distance |j| between the two points.

This change of behavior of the surface charge correlation is related to
the well-known fact that a negative curvature acts as a mass in the field
equations. The curvature replaces the flat logarithmic Coulomb potential
by the potential (2.11) which has an exponential decay at large distance s.
For a flat disk, the algebraic decay of the two-point surface charge corre-
lation is due to these field lines which connect the two points through the
vacuum outside the disk. On a pseudosphere, these field lines outside the
disk nevertheless carry an exponentially decaying interaction.

For retrieving the macroscopic limit from microscopic models, it is
necessary that the thickness T of the surface charge density be negligible
compared to the macroscopic length scales. On a pseudosphere with a
radius of curvature a, in a disk of radius R, we have considered only the
case R ± a. The macroscopic behavior is expected to hold only when
a ± T. The two exactly solvable microscopic models which have been
considered do exhibit the expected macroscopic features when this condi-
tion is satisfied.
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